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We applied two-dimensional numerical methods to describe the spatial arrangement of
tubules in human dentin. The methods considered were two-point correlation functions,
entropy-like measures, and angular distributions between nearest neighbors. The
correlation functions were based on Fourier transform methods. The latter two approaches
were based on stochastic geometry, and involved developing the Delaunay tessellations of
the tubule patterns and their dual Voronoi diagrams. We discovered that for analyzing the
distribution of tubules the geometric methods of lattice tessellations were more sensitive to

structural order of the tubules than were Fourier-based schemes. Analysis of the data
indicated that dentinal tubules are highly ordered in normal dentin.
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1. Introduction

Dentin is the hard, mineralized tissue in teeth that lies
between the exterior enamel layer and the pulp. The most
striking morphological feature of dentin is the tubule,
which is a continuous cylindrical channel approximately
1-2 pm in diameter that runs between the dentin-enamel
junction and the pulp. Tubules are surrounded by highly
mineralized cuffs of peritubular dentin, and are
imbedded in a matrix of mineralized collagen called
intertubular dentin. Previous studies have described the
distribution of tubules in human dentin in terms of the
number density of tubules, tubule radius, and width of the
peritubular cuff [1, 2]. This information has been used to
interpret positional differences in the physical properties
of dentin such as hardness and elastic modulus [3, 4].

In addition to the role that tubule density, orientation,
and distribution might have in affecting mechanical
behavior, tubule organization appears to play a sig-
nificant role in demineralization and etching. In a
previous study, we were able to explain the results of a
controled demineralization experiment in terms of the
tubule density and orientation with respect to the etching
direction [5]. We hypothesized that the etching rate and
resulting surface morphology were controled by the
density and orientation of the tubules, which depend
upon location within the dentin.

There are other reasons for a quantitative measure of
tubule organization. Because the tubule lumens are the
remnant homes of the odontoblast processes, knowledge
of their organization might be helpful in understanding

dentinogenesis or disease processes. A characteristic trait
in dentinogenesis imperfecta, a heritable disorder of
dentin, is few and irregular tubules in a disorganized
collagen matrix. These histological observations have
not been quantitative, largely because of the lack of a
framework to describe tubule organization.

In cross section, the tubules look like an ensemble of
circular holes. There are four generic ways that the
tubules might be distributed on the cross section: (a)
ordered on a periodic lattice; (b) disordered about
periodic lattice sites; (c) clustered; or (d) randomly
positioned within the intertubular matrix. Number
density and size alone do not distinguish among these
spatial distributions, so previous work is of limited value
for understanding the spatial organization of the tubules.

In this study, we explored several two-dimensional
numerical methods of describing point pattern distribu-
tions, and applied these methods to evaluate the tubule
distributions near the dentin-enamel junction (primary
outer dentin). The methods considered were two-point
correlation functions, entropy-like measures, and angular
distributions between nearest neighbors. The correlation
functions were based on Fourier transform methods. The
latter two approaches were geometric, and involved
developing the Delaunay tessellations of the tubule
patterns and their dual Voronoi diagrams. Though the
principal focus was on the spatial arrangement of dentin
tubules, the point pattern techniques described in this
study are applicable to any materials problem where
spatial arrangement of microstructure is important.
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2. Materials and methods

Three freshly extracted third molars from females aged
19-23 were used in this study. The teeth were sterilized
with gamma irradiation prior to use [6]. Each tooth was
mounted in polymethylmethacrylate and radiographed to
determine the location of the dentin-enamel junction
with respect to the occlusal surface. Then each tooth was
sectioned parallel to the occlusal surface and just below
the dentin-enamel junction using a modified water-
cooled low speed diamond saw (Isomet, Buehler Ltd.,
Lake Bluff, IL). The location of the specimens and the
approximate orientation of the tubules are shown in Fig.
1. The cut disks were 0.75 mm thick. They were abraded
flat on silicon carbide paper (grits 400, 600, and 800), and
then polished using successive aluminum oxide slurries
of 1.0-, 0.3-, and 0.05-pm particle size. Between
polishing steps, each specimen was ultrasonicated to
remove debris.

Each dentin disk was sectioned into four parts, and
fiduciary marks were cut near the periphery close to the
dentin-enamel junction. Each section was studied with a
wet scanning electron microscope (modified ISI SX-40A
SEM), which permitted imaging without prior desicca-
tion or coating [7]. The instrument operated under a low
pressure of approximately 10—-100 m Torr, which sup-
pressed charging but led to eventual desiccation of the
sample. However, for mineralized dentin, no significant
morphological changes have been detected during drying
[8]. Selected areas of the four quadrants nearest the
dentin-enamel junction were imaged and photographed
at 20kV and magnification of 2000 x . The SEM images
were digitized into 256-level gray scale images con-
taining 512 x 384  picture elements (pixels).
Magnification errors were minimized by checking
microscope calibration against known standards, by
viewing samples in an untilted configuration at the
same working distance, and by determining the errors in
magnification at different working distances.

2.1. Image processing

The SEM images were converted from gray scale to
binary format with the pixels contained within the tubule
lumens defined as occupied (pixel value of 1) and the
dentinal hard tissue defined as unoccupied (pixel value
of 0). These binary images were then segmented with a
cluster-labeling algorithm so that each tubule was

entenmel

L specimen

Figure I An artist’s rendering showing the location of the cut specimen
with respect to the coronal dentin. The lines crossing the dentin from the
dentin-enamel junction to the pulp represent the tubule lumens. Though
the tubule patterns are more complex than shown, in the center part of
the occlusal section (shown on the right) the tubules intersect the cut
surface at approximately right angles.
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uniquely labeled (e.g. 1, 2, 3, ...,N). The number density
of tubules, defined as the number of tubules per unit area,
was calculated after labeling.

The two-point correlation functions were calculated
for each of the binary images. Next, the center of gravity
of each tubule lumen was calculated and used to define a
point lattice for the tubule distribution. These lattice
points were used as vertices of a Delaunay tessellation
from which a Voronoi diagram was generated. The
tessellations were subsequently analyzed according to
methods described below. This analysis procedure, as
followed for a typical SEM image of dentinal tubules, is
shown in Fig. 2.

2.2. Test patterns

Four generic, discreet point patterns were created to
explore the range of tubule distributions that might be
observed in dentin. These patterns were created on a
rectangular image space containing 512 x 384 pixels
(corresponding to the digital image of the SEM). The
generic patterns were: (1) a square (periodic) lattice of
m X n points 50 pixels apart (D, = 50); (2) a disordered
lattice obtained by randomly displacing the tubules in a
circular region about the periodic lattice sites of the
m X n square grid; (3) a random lattice that approxi-
mated the complete spatial randomness of a Poisson
point process; (4) groupings of points clustered about
randomly positioned sites. Examples of these generic
patterns are provided in Fig. 3.

Multiple images of the disordered, clustered, and
random point patterns were created by varying the
starting seed value of the random number generator. The
disordered patterns were created by randomly distri-
buting points in a circular region centered about the
square lattice sites in terms of a maximum radius, D/D,,.
The maximum radius ranged from 0.1 to 1.0 in equal
increments. For each value of D/D,, four point patterns
were created starting with different seed values of the
uniform random number generator. The root mean
square tubule displacements differed slightly for each
seed value, thereby allowing us to obtain a statistical
measure of the accuracy of the methods used to describe
the point pattern distributions.

Ten random point patterns were created with a uniform
random number generator, the probability level for site
occupancy set to approximate the range in tubule density
seen with the SEM images (60—100 tubules per image).
The same random number generator was also used to
generate the lattices for the clustered patterns. For the
clustered patterns, the probability level for site occu-
pancy was set to provide anywhere from six to ten
randomly distributed lattice sites per image. Ten points
were then randomly distributed about each site in the
same manner as used to construct the disordered point
patterns, with the maximum displacement radius
D=05D,.

2.3. Data analysis
The first two spatial correlation functions, S, are defined
as
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(b) Binary image

(c) 2—point correlation function

(d)  Voronoi tessellation

Figure 2 Representative stages in the image processing procedure used to analyze the distribution of tubules in human dentin: (a) the unprocessed
SEM image of the tubules, (b) the resulting binary image, (c) the two-point correlation function S, of the binary image, and (d) the resulting Voronoi

diagram. The bar in the SEM image represents 10 pm.

S =) S ={f0)flr+x) (1)

Here, the brackets refer to an integration of the spatial
coordinates r, and f(r) is a characteristic function that
estimates the spatial distribution of any two phases. For
this analysis, intertubular and peritubular dentin were
given the material value of 0, and tubule lumens were
defined with material value of 1. Hence, f(r) =1 for
pixels occupied by tubules, and f(r) = 0 elsewhere.

The two-point correlation function, S,, was calculated
from the binary images with the help of the convolution
theorem. The convolution theorem states that for any two
functions f (x) and g(x) that have Fourier transforms F'(k)
and G(k), then

o0 o0
/ g)f(x+r)dx = / F(k)G*(k)e ™ dk  (2)
0 — o0

Here, G* (k) is the complex conjugate of G(k). For a two-
dimensional binary image given by f(x,y) with Fourier
transform F(k,w), the convolution theorem allows us to
write the two-point correlation function as

Sy(x) = FFT ! |[F (k,w)|? (3)

Here, FFT ! is the inverse Fourier transform.

The tubule centers of gravity (the set
S =1{S,,8,,...5,} of n distinct tubules) were used as
the vertices of a Delaunay triangular tessellation of the

images Z(S). Delaunay tessellation makes use of the
property that all circumcircles of a Delaunay triangle are
empty; that is, they contain no other vertices. In practice,
any three near neighbor points (tubules) are joined
together as a triangle if no other points reside within the
circumcircle formed by the three points. If another tubule
center of gravity does lie within the circumcircle, then
the three points of the triangle do not satisfy the empty
circumcircle criterion and new points must be chosen.
Delaunay triangles are formed in this manner until all of
the image space is tessellated.

The interior angles of each of the Delaunay triangles
were determined with the inner product relationship from
vector algebra. The minimum and maximum angles of
each triangle were stored in separate arrays for later
comparison with the angle distributions expected for
complete spatial randomness.

Voronoi polygons were formed from the intersection
of perpendicular bisectors of the sides of the Delaunay
triangles. As with the Delaunay triangles, the Voronoi
polygons tessellate the image space. The Voronoi
polygons were used to calculate the Thiel’s redundancy
measure, R*, defined as [9]

R = H, max H (4)
Here, H is an entropy statistic used to define the tubule
organization. H . and H were determined from the areas
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Figure 3 Simulated point patterns used for the analysis: (a) square array, (b) random displacements (D = 0.15D,) about the square lattice, (c)
clustered point pattern, and (d) a random pattern created with a uniform random number generator.

of the Voronoi polygons following the method of
Chapman [10]

Hmax = ln(n)

A,

H= ZP;‘ In(1/p;)

Here, n was the number of tubules in the image, and A;
was the area of the ith Voronoi polygon. For these
calculations, the contributions from the boundary
polygons were excluded.

2.4. Statistical analysis

The distributions of both the minimum and maximum
angles of Z(S) were compared with a Chi-squared
goodness of fit test between the observed frequencies and
the expected frequencies of a theoretical distribution.
Cells in the frequency distribution that contained fewer
than five observations were combined with adjacent cells
prior to the analysis. The expected frequencies used for
comparison were obtained from the random lattice, the
clustered lattice, and the square periodic lattice that had
been displaced by 15%. A one-tailed probability of
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obtaining a value of x> or greater (p) was also
determined. The values of the redundancy measure, R*,
were compared using ANOVA.

3. Results
The two-point correlation function along the x-axis is
shown in Fig. 4 for the square periodic lattice with lattice
spacing D, and two examples of the displaced lattices.
The correlation functions, which were normalized to the
volume fraction of simulated tubules in the images, have
been truncated at a length scale of 1.5 D, for clarity of
discussion. The periodic grid (solid line) had a strong
peak centered one lattice unit (D,) away from the origin.
The magnitude of this peak was approximately 80% of
the main peak centered at the origin. The dashed line is
the correlation function for a regular lattice that had been
displaced by an average distance of 7%. The amplitude
of the D, peak was approximately one fourth that of the
non-displaced lattice, and was not as well localized. The
dotted line is representative of a lattice where the tubules
had been displaced an average of 15%, and now the D,
peak was negligible and spread out over a considerable
range.

The correlation function of a typical random distribu-
tion is compared with the correlation functions of two
representative patterns of dentin tubules in Fig. 5. Unlike
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Figure 4 The two-point correlation function, S,, as a function of radial
distance D/D,,, where D, is the lattice spacing for the periodic lattice.
The solid line is the correlation function for the periodic square lattice;
whereas, the dashed line and dotted line represent the correlation
functions for D/D, =0.07 and D/D, = 0.15, respectively. Slight
displacements from perfect periodicity reduce and broaden the first
neighbor peak at D,,.
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Figure 5 A comparison of S, calculated for two representative dentinal
tubule patterns with the simulated random lattice. The tubule patterns
represented the extremes of the observed order (R* = 0.005) for the
most ordered, and (R* = 0.026) for the least ordered. S, had a broad
peak centered near 6pum in the most ordered sample, but no short-range
correlation in the less ordered sample. The width of the random
pattern’s central peak is less than that for the dentinal tubules because
the simulated tubules were of smaller radius.

the periodic lattice, the random patterns did not show any
significant peaks aside from the central peak at the origin.
This central peak was narrower in the random pattern
than for the SEM images of the tubules because the radii
of the simulated tubules were smaller. S, of the tubule
patterns also had an extended region of zero value,

indicating that there was a well-defined minimum
separation between the tubules. For the most highly
ordered tubule pattern (corresponding to the smallest
value of R* = 0.005), there was a broad peak near 6 pm.
No such peak was observed for the tubule pattern with
the larger value of R*(= 0.026), which appeared much
more like the random correlation pattern.

Results of some of the geometric measures of tubule
organization are provided in Table I. These results are
compared with the simulated patterns. The number
density of tubules ranged from 20 to 40 thousand per
square mm, consistent with those measured by others
near the dentin-enamel junction. Values of R* for the
dentin specimens ranged from 0.016 to 0.024, whereas
R* averaged 0.128 and 0.467 for the random and
clustered specimens, respectively. The variation of R*
with displacement from a periodic grid is shown in
Fig. 6. R* increased from zero (for no displacement)
upwards of 0.08 for large average displacements. The
expectation of R* for a random Poisson point process
(0.134) is shown as a solid line in this figure.

The distributions of minimum angles of the Delaunay
triangles are provided in Table II for the simulated tubule
patterns, the theoretical Poisson point process defining
complete spatial randomness, and the dentin specimens.
A similar listing of the distribution of maximum angles is
given in Table IIl. The frequency distributions of the
minimum angles for the simulated patterns are provided
in Fig. 7, where we have used a bin size of 10°. The
frequency distribution of the minimum angles of a
typical dentin image is compared with those of the
random distribution and a displaced lattice in Fig. 8.
Results of the Chi-squared analyses for the maximum
angles in Z(S) are listed in Table V.

4. Discussion
In this study, we were interested in developing a
stochastic geometric model of tubule organization
within the dentin matrix. An initial analytic model that
was chosen to describe this tubule organization was the
random Poisson point process that approximates com-
plete spatial randomness. Hence, we formed a null
hypothesis that tubules were distributed randomly within
the dentin matrix. Our task was one of finding a sensitive
measure of organization that could differentiate between
random and non-random tubule distributions.
Correlation functions are frequently used to describe
texture, and have been used to provide better bounds for
elastic [12] and transport [11] constants in heterogeneous
materials. However, in this application S, was not

TABLE I Results of geometric properties of the tubule distributions in the dentin specimens and in the simulated lattices. N, is the number
density of the tubules (points), R* is the Thiel’s redundancy measure, and (a,,) are the average minimum and maximum angles in Z(S) respectively.
Standard deviations are in parenthesis

Specimen Ny(mm~2)x 104 R* (Omin) deg. (Omax) deg.
Dentin 1 2.76 (0.19) 0.016 (0.009) 38.5 (2.8) 91.5 (2.9)
Dentin 2 4.22 (0.83) 0.021 (0.011) 39.8 (1.0) 87.2 (1.2)
Dentin 3 2.53 (0.94) 0.024 (0.012) 39.2 (2.6) 88.7 (4.2)
Random 1.86-4.61 0.128 (0.026) 28.8 (14.0) 97.8 (25.4)
Clustered 2.30-3.26 0.467 (0.020) 23.7 (14.0) 106.1 (24.9)
Square periodic 2.59 0.000 (0.000) 45.0 (0.3) 89.6 (0.4)
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Figure 7 The frequency distribution of minimum angles of Z(S) for
random, displaced, and clustered lattices. The clustered lattice
maintains a higher proportion of smaller angles because the Delaunay
triangles at the cluster borders must span to distant points. The random
lattice is symmetric about 30°, whereas the displaced lattice
(D/D, = 0.20) still contains a large number of high angle triangles.

Figure 6 The value of Thiel’s redundancy measure, R¥, as a function of
the average random displacements about the square lattice sites. The
expectation of R* for complete spatial randomness is 0.134, a value
never reached by random displacements about a periodic lattice.

sensitive in differentiating between order and disorder.
Only in the few cases of greatest tubule order as

Fourier transform. In a perfectly periodic system, all of
the amplitude is carried by the few coefficients that

determined by R* did S, hint at any structural order.
This was clearly observed in the behavior of S, with only
slight displacements from the periodic lattice. An
average, random displacement of only 0.07 D, (7%)
decreased the amplitude of the peak at D, by a factor of
four. By the time displacements had reached 0.15D,,
there was no longer any evidence of structural order,
although the square pattern was still apparent with visual
inspection (Fig. 2b).

The sensitivity of S, to small changes in spatial order
may be understood in terms of the properties of the

define the characteristic frequencies of the pattern.
Deviations from perfect periodicity require more terms
in the Fourier expansion, thereby decreasing the
amplitude of the fundamental peaks and delocalizing
them as well. Because Fourier methods discard much of
the geometric information, S, should not be expected to
be a sensitive measure of small deviations from
periodicity.

Other approaches to point pattern analysis consider the
angular distribution between nearest neighbors. Boots
[13] suggested selecting an angle at random from a

TABLE II Frequency distributions of the minimum angles in Z(S) for the dentin specimens and the simulated lattices. The numbers are
normalized to the average number of tubules ( points) within the images

Specimen 0-10° 11-20° 21-30° 31-40° 41-50° 51-60°
Random (CSR) 0.06 0.17 0.24 0.26 0.20 0.07
Random pattern 0.06 0.17 0.23 0.28 0.19 0.07
Square periodic 0.00 0.00 0.00 0.00 1.00 0.00
Displaced 15% 0.00 0.00 0.01 0.26 0.64 0.09
Displaced 20% 0.07 0.03 0.13 0.30 0.35 0.12
Clustered 0.19 0.28 0.22 0.16 0.12 0.03
Dentin 1 0.05 (0.01) 0.06 (0.02) 0.10 (0.07) 0.33 (0.09) 0.35 (0.07) 0.11 (0.07)
Dentin 2 0.04 (0.02) 0.04 (0.02) 0.08 (0.01) 0.30 (0.06) 0.38 (0.02) 0.16 (0.06)
Dentin 3 0.07 (0.05) 0.04 (0.02) 0.08 (0.01) 0.27 (0.05) 0.43 (0.03) 0.11 (0.05)

TABLE III Frequency distributions of the maximum angles in Z(S) for the dentin specimens and the simulated lattices. The numbers are
normalized to the average number of tubules ( points) within the images

Specimen 60-80° 81-100° 101-120° 121-140° 141-160° 161-180°
Random (CSR) 0.27 0.43 0.22 0.07 0.01 0.00
Random pattern 0.26 0.43 0.16 0.09 0.01 0.05
Square periodic 0.00 1.00 0.00 0.00 0.00 0.00
Displaced 15% 0.43 0.42 0.01 0.00 0.03 0.11
Displaced 20% 0.45 0.37 0.03 0.00 0.03 0.12
Clustered 0.17 0.35 0.24 0.13 0.08 0.03
Dentin 1 0.47 0.34 0.08 0.02 0.03 0.06
Dentin 2 0.54 0.28 0.06 0.04 0.05 0.03
Dentin 3 0.65 0.13 0.06 0.00 0.13 0.03
Dentin average 0.55 0.25 0.07 0.02 0.07 0.01
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TABLE IV Results of Chi-square analysis of observed patterns with expected patterns for the minimum angles in Z(S). The one-tailed

probability of obtaining a value of %2 or greater is given by p

Observed frequency Expected frequency X P
Random lattice Random (CSR) 0.12 0.99
Clustered Random (CSR) 17.2 < 0.001
Displaced 15% Random (CSR) 13.9 0.003
Dentin average Random (CSR) 20.6 < 0.001
Dentin average Clustered 69 0
Dentin average Displaced 20% 0.93 0.92

random sampling of Z(S). For this sampling procedure,
it was possible to derive the probability distribution
function, pdf, for a random Poisson point process [14].

Mardia et al. [15] noted that this method of sampling
was inefficient, and proposed recording the minimum
angles, a,,;,, from each Delaunay triangle. For sampling
from a distribution of random points, they derived the
following pdf for o, (0 <o, <7/3):

F i) = 218~ 3i) S0 2i) + €O5(20)
- COS(4amin)] (6)

The pdf for o,;,, is shown in Fig. 9. For the random
distribution, the pdf is a maximum at 30°. Integrating the
pdf, we obtained the theoretical distribution of minimum
angles for the ten degree bin sizes used in Table II.

Comparing the measured angle distributions of the
simulated patterns, we can make some generalizations.
The random distribution was peaked at 30°, and was only
lightly populated near the tails of the angular range (0—
10°; 51-60°), as expected from the pdf. The clustered
patterns, on the other hand, had a significantly larger
fraction of small angles due to the necessity of spanning
to distant clusters. Z(S) of the perfect square lattice
formed 45° angles: o,,;, was identically 45° for each
triangle. As the tubules became randomly displaced from
the perfect square, o, took on other values, although
o, remained clustered near 45° for the smallest
displacements. The entire angular range, however,
became populated by the time the average displacements
had reached D/D, = 0.2.

0.5
O random
04 B displaced
0O dentin
0.3

frequency

0 20 30 40 50 60
angle bin (degrees)

Figure 8 The frequency distribution of minimum angles of Z(S) for the
random, displaced, and dentin averages.

Chi-squared analysis was performed to test the
hypothesis that the observed frequency was an accurate
approximation to the expected, theoretical frequencies.
The first comparison was made between the random
generated lattice and the theoretical Poisson point
process that defines complete spatial randomness
(CSR). The low value of %> (p=0.99) provides
confidence that our lattice generating procedures were
accurate. It was also apparent (Table IV) that the
distributions of a,,;, for both the clustered and periodic
displaced lattices were significantly different.

The distribution of a,,;, in Z(S) of each of the three
dentin specimens was averaged and compared with the
simulated lattices. The best agreement was obtained for
the displaced lattice with D/D, = 0.20. The random
(CSR) and clustered distributions were in poor agree-
ment with the dentin values. Thus, analysis of o, in
2(S) provides evidence that there was an underlying
order to the arrangement of dentin tubules, although we
must emphasize that the symmetry of this underlying
order was not determined in this study. A square lattice
was chosen for comparison only because of its simplicity
and not because of any predisposed belief that
odontoblasts nucleate in a square pattern.

Boots [16] derived the pdf for the maximum angles,
Omax> 1N 2(S). The frequency distribution of o, is
provided in Table III for the simulated lattices and the
dentin specimens. The y? test between the observed
random simulation and the Poisson point process (CSR)
is similar in magnitude to that observed for o,,;,. From
the analysis of a,,,,, it is highly unlikely (p < 0.01) that
the observed tubule patterns in dentin are random or

8]
1

alpha min pdf
= = =alpha max pdf
N
! \
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= 1+ ! \
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angle (degrees)

Figure 9 The theoretical probability distribution functions for o,,;, and
Oax 10 Z(S) for a random Poisson point process.

749



TABLE V Results of Chi-square analysis of observed patterns with expected patterns for the maximum angles in 2(S). The one-tailed probability

of obtaining a value of %2 or greater is given by p

Observed frequency Expected frequency X P
Random lattice Random (CSR) 0.13 0.98
Clustered Random (CSR) 40.7 <0.001
Displaced 15% Random (CSR) 9.2 0.01
Displaced 20% Random (CSR) 9.5 < 0.01
Dentin average Random (CSR) 24.9 <0.001
Dentin average Clustered 67.8 0
Dentin average Displaced 0.15 39 0.14

clustered. In addition, the hypothesis that the tubule
patterns are fluctuations about a periodic lattice cannot be
rejected (p =0.14). The correlation between the
observed tubule patterns and the displaced periodic
lattice, however, was weaker for o, than o, ;. This was
not unexpected, since the large angle tail of the
distribution function (Fig. 8) was only weakly populated
for any distribution. Therefore, one would expect that
dmax Would be less sensitive to differences in point
pattern symmetry than o,.

Angle analysis could also be performed on the interior
angles of the Voronoi polygons. However, as there is a
complimentarity in angle between the angles of the
Delaunay triangles and the interior angles of the Voronoi
polygons, it is unlikely that further analysis of the
angular distributions of the vertices of the Voronoi
polygons will provide any additional insight into tubule
arrangement. Therefore, because it was easier to
calculate the angles in Z(S) we did not perform the
angular analysis of the Voronoi diagram.

Shannon and Weaver [15] were among the first to
apply the entropy statistic,c H, as a measure of
organization. There are problems with the use of H as a
measure of organization, however. Chief among these is
that the density of points affects the value of the entropy
statistic, making comparisons among specimens with
different tubule densities problematic. Lenz [9] proposed
using the Thiel’s redundancy measure, R*, to avoid this
difficulty, and successfully applied this measure to test
for randomness of settlement distributions in a problem
in geographical analysis.

The expectation of the redundancy measure, R*, for an
infinite, random distribution of points is 0.134, close to
the value that we obtained for the simulated random
distribution [18]. The value of R* for the regular lattice
was identically zero, as anticipated from inspection of
Equations 4 and 5. Clustered point patterns gave values
of R* that were larger than those found for a random
distribution, and for our simulated patterns were more
than three-fold larger than the average for our random
patterns. Thus, the redundancy measure was useful for
distinguishing between the different classes of point
pattern distributions.

The redundancy factor never reached the expectation
of the random distribution, even for large displacements.
This was most likely because the displacements were
averaged about the original periodic lattice sites; hence,
the vestigial order had not been removed. The random
displacements appeared like noise added to the signal of
underlying periodic lattice symmetry; the noise was
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never able to completely overwhelm the underlying
signal.

A one-way ANOVA indicated that the values of R* for
the dentin specimens were significantly lower than those
of the random and clustered distributions, and that there
were no statistically detectable differences in R*
between the teeth. Evaluation of Fig. 5 indicates that
R™ measured in the dentin specimens was consistent with
a periodic array of lattice sites about which the tubule
lumens were randomly displaced. The value of this
displacement was not large (D/D,~0.2).

In summary, geometric methods of point pattern
analysis provide evidence that tubules are neither
random nor clustered in human dentin. Both angular
distribution analysis and redundancy measures suggest
instead that tubules are highly ordered. A model of
random displacements localized about periodic lattice
sites describes the distribution of tubules in human
dentin, although from the present data it is not yet
possible to determine the underlying symmetry of this
lattice. Stochastic geometric models of microstructure
will be valuable in developing improved mechanical and
transport models for heterogeneous materials such as
dentin.
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